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Abstract. Let N be the set of all meromorphic functions f de-
fined in the unit disc D that satisfy Nehari’s univalence criterion
(1 − |z|2)2|Sf(z)| ≤ 2. In this paper we investigate certain prop-
erties of the class N . We obtain sharp estimates for the spherical
distortion, and also a two-point distortion theorem that actually
characterizes the set N . Finally, we study some aspects of the
boundary behavior of Nehari functions, and obtain results that
indicate how such maps can fail to map D onto a quasidisc.

1. INTRODUCTION

Let f be analytic in the unit disc D and let Sf = (f ′′/f ′)′ −
(1/2)(f ′′/f ′)2 be its Schwarzian derivative. In 1949 Nehari showed
that if

|Sf(z)| ≤ 2

(1− |z|2)2
(1.1)

for all z ∈ D then f is univalent [11]. A necessary condition for univa-
lence is obtained by replacing the 2 with a 6 in the numerator of (1.1).
It was proved by Kraus in 1932, [9], and rediscovered later by Nehari.

Let N be the set of all meromorphic functions satisfying (1.1). This
Nehari Class was formally introduced and extensively studied in [5].
In the present paper we will make use of several results from [5] and
also earlier papers, and it is our purpose here to investigate further
properties of Nehari maps.

We shall consider functions in N normalized in two different ways.
In the first one,

f(z) =
1

z
+ b0 + b1z + · · · , (1.2)

while in the second, we let

f(0) = 0 , f ′(0) = 1 , f ′′(0) = 0 . (1.3)
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Both normalizations are achieved by composing f from the left with
siutable Möbius transformations. This leaves (1.1) invariant. The sec-
ond normalization gives rise to the class N0, and according to a result
in [3] if f satisfies (1.1) and (1.3) then it has no poles. In fact, such a
function will either be a rotation of the logarithm

L(z) =
1

2
log

1 + z

1− z
, (1.4)

or else it will be bounded. The function L has

SL(z) =
2

(1− z2)2
(1.5)

and plays a very important role and is extremal for many problems in
the class N .

There is a classical connection between the Schwarzian and second
order linear differential equations. If Sf = 2p and u = (f ′)−1/2 then

u′′ + pu = 0 . (1.6)

Conversely, if u1, u2 are linearly independent solutions of (1.6) and
f = u1/u2 then Sf = 2p.

Much of the work in [3] is based on applying comparison theorems
for solutions of differential equations to obtain bounds on f and f ′.
For example, if f ∈ N0 then u = (f ′)−1/2 satisfies the initial conditions
u(0) = 1, u′(0) = 0, and it was shown that

n(|z|) ≤ |f(z)| ≤ L(|z|) , (1.7)

and
n′(|z|) ≤ |f ′(z)| ≤ L′(|z|) , (1.8)

where

n(z) =
1√
2

(1 + z)
√
2 − (1− z)

√
2

(1 + z)
√
2 + (1− z)

√
2
.

The function n belongs to N0 and has Sn(z) = −2/(1− z2)2.
The techniques of comparison allow one also to describe the cases of

equality: if equality holds in (1.7) or (1.8) at a single z0 6= 0 then f
must be a rotation of the corresponding extremal, n or L.

In Section 2 we shall consider equation (1.6) but with the dual inital
condition, namely, u(0) = 0, u′(0) = 1. In terms of the function f
this means assuming the normalization (1.2). By considering g = 1/f ,
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f ∈ N0, we will derive in this way sharp upper and lower bounds
for the spherical distortion |f ′|/(1 + |f |2). We will also obtain a two-
point distortion theorem that actually characterizes Nehari functions.
This result can be viewed as an analogue of a theorem of Blatter that
characterizes the set of all univalent functions in D [2].

One of the main results in [5] is the fact that, for a function in N ,
the image domain is a quasidisc as soon as it is a John domain. In
other words, linear connectivity comes as a consequence of the John
condition. Recall that if f is any univalent function then one of the
many characterizations of John domains is that there exits a constant
M such that for all z ∈ D

diamf(B(z)) ≤M(1− |z|2)|f ′(z)| , (1.9)

where

B(z) = {w : |z| ≤ |w| < 1 , |arg(w)− arg(z)| ≤ π(1− |z|)} . (1.10)

For a detailed exposition of these concepts we refer the reader to [12,
Chapter 5].

In Section 3 we will derive an estimate for diamf(B(z)) when f ∈ N ,
which will indicate how a Nehari domain can fail to be a quasidisc.
Finally, in Section 4 we will be concerned with other ‘quasidisc like’
properties of Nehari domains, expressed in terms of f ′′/f ′.

2. TWO-POINT DISTORTION AND CHARACTERIZATION

The starting point in this section is a comparison lemma. It is es-
sentially contained in [3], and we include here a brief proof for the
convenience of the reader.

Lemma 1: Let P = P (x) ≥ 0 be continuous for x ∈ [0, 1) and suppose
that the solution of

v′′(x) + P (x)v(x) = 0 , v(0) = 0 , v′(0) = 1 (2.1)

is positive in the open interval (0,1). Let w be solution of

w′′(x)− P (x)w(x) = 0 , w(0) = 0 , w′(0) = 1 . (2.2)

If p = p(z) is analytic in D and |p(z)| ≤ P (|z|) then the solution of

u′′ + pu = 0 , u(0) = 0 , u′(0) = 1 (2.3)

satisfies

v(|z|) ≤ |u(z)| ≤ w(|z|) . (2.4)
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Proof: We consider u along rays starting from the origin, and without
loss of generality, we may take the segment [0, 1). Thus let ϕ(x) =
|u(x)| for x ∈ [0, 1). At x = 0 the right hand derivative of ϕ exists and
equals 1. Whenever u(x) 6= 0 then ϕ is smooth, and it is not difficult
to show that

ϕ′′(x) + |p(x)|ϕ(x) ≥ 0 .

Since the function v is positive in (0, 1), it follows from the Sturm
comparison theorem that

ϕ(x) ≥ v(x)

for all x ∈ [0, 1). This proves the lower bound in (2.4).
In order to establish the remaining inequality we turn (2.3) into the

integral equation

u(z) = z −
∫ z

0

(z − ζ)p(ζ)u(ζ)dζ .

Since |p(z)| ≤ P (|z|) it is a consequence of Lemma 8 in [6] that

|u(z)| ≤ w(|z|) .

This finishes the proof.

Theorem 1: Let f ∈ N0. Then

n′(|z|)
1 + n2(|z|)

≤ |f ′(z)|
1 + |f(z)|2

≤ L′(|z|)
1 + L2(|z|)

. (2.5)

If equality holds in either inequality at a single z0 6= 0 then f is a
rotation of the corresponding extremal.

Proof: Let f ∈ N0 and let g = 1/f . Then g satisfies (1.1) and (1.2),
hence for u = (g′)−1/2 one has

u′′ + (
1

2
Sf)u = 0 , u(0) = 0 , u′(0) = 1 .

With P (x) = (1− x2)−2 the functions v, w of the lemma are given by

v(x) =

√
L2

L′
(x)

and

w(x) =

√
n2

n′
(x) .
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So the lemma yields

n′

n2
(|z|) ≤

∣∣∣∣ f ′f 2
(z)

∣∣∣∣ ≤ L′

L2
(|z|) .

Hence, using in addition (1.8), we obtain

1 + |f(z)|2

|f ′(z)|
=

1

|f ′(z)|
+
|f 2(z)|
|f ′(z)|

≥ 1

L′(|z|)
+
L2(|z|)
L′(|z|)

,

and similarly,

1 + |f(z)|2

|f ′(z)|
≤ 1

n′(|z|)
+
n2(|z|)
n′(|z|)

.

These two inequalities give (2.5).
Finally, if equality holds in (2.5) at some z0 6= 0 then it follows

already from the case of equality in (1.8) that f must be a rotation of
n or L. This finishes the proof.

If f ∈ S, the class of all univalent function in D with f(0) =
0, f ′(0) = 1 then, as mentioned in the introduction, one has |Sf(z)| ≤
6(1 − |z|2)−2. Again by looking at g = 1/f and u = (g′)−1/2 we can
apply Lemma 1, but now only with the solution w because the cor-
responding function v has (infinitely many) zeroes [8, p. 492]. The
function w arises from the Koebe function k(z) = z/(1− z)2, that is,

w(x) =

√
k2

k′
(x) ,

and we obtain in this fashion the sharp estimate∣∣∣∣ f ′f 2
(z)

∣∣∣∣ ≥ 1− |z|2

|z|2
.

This inequality is equivalent to one established in 1919 by Löwner,
namely that for functions g in the class Σ,

|g′(ζ)| ≥ 1− 1

|ζ|2
, |ζ| > 1 .

It is interesting to note that in our proof we only use the fact that
(1− |z|2)2|Sf(z)| ≤ 6, rather than the univalence of f .

The next result characterizes Nehari functions in terms of a two-point
distortion property. Let dh(z1, z2) be the hyperbolic distance between
points in D.
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Theorem 2: Let f be meromorphic and locally univalent in D. Then

(1− |z|2)2|Sf(z)| ≤ 2 (2.6)

for all z ∈ D if and only if

(1− |z1|2)|f ′(z1)|(1− |z2|2)|f ′(z2)| dh(z1, z2)2 ≤ |f(z1)− f(z2)|2 (2.7)

for all z1, z2 ∈ D. Furthermore, equality holds for z1 6= z2 if and only if
f is of the form T ◦ L ◦ τ , where T is Möbius and τ an automorphism
of D with τ(z1), τ(z2) ∈ (−1, 1).

Proof: Suppose first that (2.6) holds. Then

g(z) =
(1− |z1|2)f ′(z1)

f(
z + z1
1 + z̄1z

)− f(z1)
=

1

z
+ b0 + b1z + · · · (2.8)

also satisfies (2.6). It follows from Theorem 2 in [5] that

(1− |z|2)dh(0, z)2|g′(z)| ≤ 1 (2.9)

for all z ∈ D. This gives

(1− |z|2)
(1− |z1|2)2|f ′(z1)||f ′(

z + z1
1 + z̄1z

)|

|1 + z̄1z|2|f(
z + z1
1 + z̄1z

)− f(z1)|2
dh(0, z)

2 ≤ 1 .

With z2 =
z + z1
1 + z̄1z

, the above inequality gives (2.7).

The case of equality in (2.7) for z1 6= z2 corresponds to the case of
equality in (2.9) for z 6= 0. As shown in [5] this occurs if and only if g
is a rotation of a function of the form 1/L+ a. Hence f is of the form
stated.

Let us assume now that (2.7) holds. Then the function g as defined
in (2.8) satisfies (2.9). Hence, for z ∈ D we have

(1− |z|2)(|z|+ 1

3
|z|3 + · · · )2 | − 1

z2
+ b1 + · · · | ≤ 1 ,

which implies that

(1− 1

3
|z|2 +O(z3))(1− Re{b1z2}+O(z3)) ≤ 1

as z → 0. Therefore

Re{b1
z2

|z|2
} ≤ 1

3
+O(z)

as z → 0, which in turn gives that |b1| ≤ 1/3. Thus

(1− |z1|2)2|Sf(z1)| = |Sg(0)| = 6|b1| ≤ 2 .
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Since the point z1 is arbitrary we conclude that f ∈ N .

Remarks:

1. If Ω = f(D) is the image domain with Poincaré metric λ(w)|dw|
and hyperbolic distance δh, then (2.7) can be rewritten as

δh(w1, w2) ≤
√
λ(w1)λ(w2) |w1 − w2|

for points w1, w2 ∈ Ω.

2. Theorem 2 resembles a result of Blatter, according to which an
analytic function in the unit disc is univalent if and only if

|f(z1)−f(z2)|2 ≥
1

8

sinh2(2dh(z1, z2))

cosh(4dh(z1, z2))
{(1−|z1|2)2|f ′(z1)|2+(1−|z2|2)2|f ′(z2)|2} .

Here the cases of equality for z1 6= z2 only happen when f is of the
form ak ◦ τ + b with τ(D) = D, τ(z1), τ(z2) ∈ (−1, 1), and k the Koebe
function.

3. A DIAMETER BOUND

As was pointed out in the proof of Theorem 2, if f ∈ N is normalized
so that f(z) = 1/z + b0 + b1z + · · · then

(1− |z|2)L2(|z|)|f ′(z)| ≤ 1 .

Lemma 2: Let f(z) = 1/z + b0 + b1z + · · · belong to N . Then for
|ζ| = 1

q(r) = (1− r2)L2(r)|f ′(rζ)| (3.1)

is decreasing for r ∈ [0, 1).

Proof: Let |ζ| = 1 and for r ∈ [0, 1) define

u(r) =
1√

(1− r2)|f ′(rζ)|
.

It was shown in [5] that

d

dr
[(1− r2)u′(r)] ≥ 0 . (3.2)

Also, u(0) = 0 and u′(0) = 1. Let

v(r) = (1− r2)u′(r)L(r)− u(r) .

A simple calculation shows that

v′(r) = L(r)
d

dr
[(1− r2)u′(r)] ,
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hence v is increasing. Since v(0) = 0 we conclude that v(r) ≥ 0 for
r ∈ [0, 1), and therefore

d

dr

(
u(r)

L(r)

)
=

v(r)

(1− r2)L2(r)
≥ 0 .

Since q(r) = (L(r)/u(r))2 the lemma follows.

Theorem 3: Let

f(z) =
1

z
+ b0 + b1z + · · ·

belong to N . Then

diamf(B(z)) ≤ K(1− |z|2)|f ′(z)|L(|z|) , (3.3)

where K is an absolute constant.

Proof: Let z = reit and w = ρeiθ ∈ B(z). We write q = (1 −
|z|2)|f ′(z)|. The classical distortion theorems for univalent functions
imply that

|f(reiθ)− f(reit)| ≤ K1q (3.4)

and
(1− r2)|f ′(reiθ)| ≤ K2q , (3.5)

where K1, K2 are absolute constants. It follows now from Lemma 2
and equation (3.5) that

(1− ρ2)|f ′(ρeiθ)|L2(ρ) ≤ (1− r2)|f ′(reiθ)|L2(r) ≤ K2qL
2(r) . (3.6)

Hence

|f(ρeiθ)− f(reiθ)| ≤
∫ ρ

r

|f ′(seiθ)|ds ≤ K2q

∫ ρ

r

L2(r)

(1− s2)L2(s)
ds

≤ K2qL
2(r)

∫ 1

r

L′(s)

L2(s)
ds = K2qL(r) .

This inequality together with (3.4) implies (3.3).

In Theorem 3 we have used the stated normalization on f in order
to make ∂f(D) bounded. If now f ∈ N0 then, as pointed out in the
introduction, the image Ω will either be a parallel strip or else will
be bounded. In the latter, it is clear that (3.3) will still hold with K
replaced by some constant M depending on f . From the results in [5],
such a domain will be a quasidisc if for some constant M the stronger
estimate holds:

diamf(B(z)) ≤M(1− |z|2)|f ′(z)| ,
that is, equation (3.3) without the logarithm.



CHARACTERISTIC PROPERTIES OF NEHARI FUNCTIONS 9

4. BOUNDARY BEHAVIOR AND EXCEPTIONAL POINTS

It was shown in [7] that all Nehari functions admit a (spherically)
continuous extension to the closed disc. In this section we shall be
interested in studying the behavior of

(1− r2)Re{ζ f
′′

f ′
(rζ)}

as r → 1. According to Theorem 4 in [5], a Nehari domain is a John
domain (hence a quasidisc) if and only if the corresponding function f
normalized to be in N0 satisfies

lim sup
|z|→1

(1− |z|2)Re{z f
′′

f ′
(z)} < 2 . (4.1)

Recall also that if f ∈ N0 then in any case

(1− |z|2)|f
′′

f ′
(z)| ≤ 2 . (4.2)

See, e.g., [4].

The following lemma is of a general nature:

Lemma 3: Let h(z) be analytic in D and suppose that for some
0 < α <∞, M <∞

(1− |z|)α|g(z)| ≤M . (4.3)

Then there exist at most countably many points ζ, |ζ| = 1, such that

lim
r→1

(1− r)αg(rζ) =: b(ζ) 6= 0 exists . (4.4)

Proof: Let |ζ| = 1 be such that (4.4) holds. For r ∈ (0, 1) and z ∈ D
let

f(z, r) = (1− z + r

1 + rz
)αg(

z + r

1 + rz
ζ) . (4.5)

Hence by (4.3)

|f(z, r)| ≤ 2αM |1− z + r

1 + rz
|α(1− | z + r

1 + rz
|2)−α

=
2αM |1 + rz|α|1− z|α

(1 + r)α(1− |z|2)α
≤ 4αM(

|1− z|
1− |z|

)α . (4.6)

Therefore as r → 1, f(z, r) is locally uniformly bounded in z. Also, by
(4.4) and (4.5) we have
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f(z, r) = (1− ζ̄w)αg(w)→ b(ζ) (4.7)

as r → 1, where w = ζ
z + r

1 + rz
. From the theorem of Montel we conclude

that (4.7) holds locally uniformly in z.
Let

ϕ(z) = (1− |z|2)α|g(z)| .

If ζ is such that (4.4) holds, then according to (4.5)

ϕ(
z + r

1 + rz
ζ) =

(1− r2)α(1− |z|2)α

|1 + rz|2α
|g(

z + r

1 + rz
ζ)| → (

1− |z|2

|1− z|
)α|b(ζ)|

as r → 1. The convergence is locally uniform in z. Hence as z → ζ
radially

ϕ(z)→ 2α|b(ζ)| 6= 0 ,

but we can also find a curve γ ending at ζ along which the function ϕ
tends to 0. The Ambiguous Point Theorem of Bagemihl, [1], implies
that the number of points ζ for which this can happen is at most
countable. This finishes the proof.

Theorem 4: Let f ∈ N0. Then

lim inf
r→1

(1− r2)Re{ζ f
′′

f ′
(rζ)} < 2 , (4.8)

except possibly for countably many points ζ.

Proof: Observe first that in light of (4.2), the quantity on the left
hand side of (4.8) is bounded by 2. Suppose ζ is such that we have
equality in (4.8). Then

lim
r→1

(1− r2)Re{ζ f
′′

f ′
(rζ)} = 2 .

Using (4.2) again we conclude that

lim
r→1

(1− r2)Im{ζ f
′′

f ′
(rζ)} = 0 ,

hence

lim
r→1

(1− r2)f
′′

f ′
(rζ) = 2 .

But according to Lemma 3 applied to g = f ′′/f ′ and α = 1, the last
equation can only happen for countably many points ζ.
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Lemma 4: Let

f(z) =
1

z
+ b0 + b1z + · · ·

be in N . Then for |ζ| = 1 and r ∈ (0, 1)

|f(ζ)− f(rζ)| ≤
∫ 1

r

|f ′(sζ)|ds ≤ (1− r2)|f ′(rζ)|

r − 1− r2

2
Re{ζ f

′′

f ′
(rζ)}

. (4.9)

Remark:

The right-hand side of (4.9) is rather similar to the extension oper-
ator considered in [4].

Proof: Let |ζ| = 1 and let again

u(r) =
1√

(1− r2)|f ′(rζ)|
.

Then ((1− r2)u′(r))′ ≥ 0, hence for 0 < r < s < 1

(1− s2)u′(s) ≥ (1− r2)u′(r) ,
and therefore

u(s)− u(r) ≥ (1− r2)u′(r)(L(s)− L(r)) .

Thus

(1− s2)|f ′(sζ)| = 1

u2(s)
≤ 1

u2(r)[1 + (1− r2)u
′

u
(r)(L(s)− L(r))]2

,

or

|f ′(sζ)| ≤ (1− r2)|f ′(rζ)|L′(s)

[1 + (1− r2)u
′

u
(r)(L(s)− L(r))]2

=
|f ′(rζ)|

(u′/u)(r)

d

ds

 −1

1 + (1− r2)u
′

u
(r)(L(s)− L(r))

 .

This implies ∫ 1

r

|f ′(sζ)|ds ≤ |f ′(rζ)|
(u′/u)(r)

,

which is equivalent to (4.9) since

(1− r2)u
′

u
(r) = r − 1− r2

2
Re{ζ f

′′

f ′
(rζ)} .
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Theorem 5: Let f ∈ N . Then

lim inf
r→1

|f(ζ)− f(rζ)|
(1− r2)|f ′(rζ)|

<∞ (4.10)

with the exception of at most countably many points ζ ∈ ∂D.

Proof: Without loss of generality we may assume that

f(z) =
1

z
+ b0 + b1z + · · · ,

since such a normalization can affect condition (4.10) at most at one
boundary point. Also, we may take b0 = 0. Then (4.10) follows directly
from (4.8) and (4.9) provided we can show that (4.8) still holds when
f(z) = 1/z + · · · . Let g = 1/f . Then g ∈ N0, hence it is either a
rotation of L or else it is bounded. In the latter, it is easy to see that
(4.8) for g implies (4.8) for f , while if g = 1/L then (4.8) can be verified
directly.

To conclude, we remark that if f(D) is a bounded quasidisc then

lim sup
r→1

|f(ζ)− f(rζ)|
(1− r2)|f ′(rζ)|

<∞ (4.11)

for all ζ. It is natural to ask whether a stronger form of Theorem 5 is
true, where (4.11) holds with at most countably many exceptions.
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